Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3805856

ABSTRACT

Background: The QCovid algorithm is a risk prediction tool for COVID-19 hospitalisation and mortality that can be used to stratify patients by risk into vulnerability groups . We carried out an external validation of the QCovid algorithm in Scotland.Methods: We established a national COVID-19 data platform using individual level data for the population of Scotland (5.4 million residents). Primary care data were linked to reverse-transcription polymerase chain reaction (RT-PCR) virology testing, hospitalisation and mortality data. We assessed the performance of the QCovid algorithm in predicting COVID-19 hospitalisation and deaths in our dataset for two time periods: 1 March, 2020 to 30 April, 2020, and 1 May, 2020 to 30 June, 2020.Findings: Our dataset comprised 5,384,819 individuals, representing 99% of the estimated population (5,463,300) resident in Scotland in 2020. The algorithm showed excellent calibration in both time periods with close correspondence between observed and predicted risks. Harrell ’s C for deaths in males and females in the first period was 0.946 (95% CI: 0.941 - 0.951) and 0.925 (95% CI: 0.919 - 0.931) respectively. Harrell’s C for hospitalisations in males and females in the first period was 0.809 (95% CI: 0.801 - 0.817) and 0.816 (95% CI: 0.808 - 0.823) respectively.Interpretation: The QCovid algorithm shows high levels of external validity in predicting the risk of COVID- 19 hospitalisation and death in the population of Scotland.Funding: Medical Research Council, National Institute for Health Research Health Technology Assessment Programme, funded through the UK Research and Innovation Industrial Strategy Challenge Fund Health Data Research UK.Declaration of Interests: Dr. Hippisley-Cox reports grants from MRC, grants from Wellcome Trrust, grants from NIHR, during the conduct of the study; other from ClinRisk Ltd, outside the submitted work. Dr. Sheikh reports grants from NIHR, grants from MRC, grants from HRR UK, during the conduct of the study. All other authors report no conflict of interest.Ethics Approval Statement: Ethical permission for this study was granted from South East Scotland Research Ethics Committee 02 [12/SS/0201]. The Public Benefit and Privacy Panel Committee of Public Health Scotland, approved the linkage and analysis of the de-identified datasets for this project [1920-0279].


Subject(s)
COVID-19
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3789264

ABSTRACT

Background: The BNT162b2 mRNA (Pfizer-BioNTech) and ChAdOx1 (Oxford-AstraZeneca) COVID-19 vaccines have demonstrated high efficacy against infection in phase 3 clinical trials and are now being used in national vaccination programmes in the UK and several other countries. There is an urgent need to study the ‘real-world’ effects of these vaccines. The aim of our study was to estimate the effectiveness of the first dose of these COVID-19 vaccines in preventing hospital admissions.Methods: We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) database comprising of linked vaccination, primary care, Real-Time Polymerase Chain Reaction (RT-PCR) testing, hospitalisation and mortality records for 5.4 million people in Scotland (covering ~99% of population). A time-dependent Cox model and Poisson regression models were fitted to estimate effectiveness against COVID-19 related hospitalisation (defined as 1- Adjusted Hazard Ratio) following the first dose of vaccine.Findings: The first dose of the BNT162b2 vaccine was associated with a vaccine effect of 85% (95% confidence interval [CI] 76 to 91) for COVID-19 related hospitalisation at 28-34 days post-vaccination. Vaccine effect at the same time interval for the ChAdOx1 vaccine was 94% (95% CI 73 to 99). Results of combined vaccine effect for prevention of COVID-19 related hospitalisation were comparable when restricting the analysis to those aged ≥80 years (81%; 95% CI 65 to 90 at 28-34 days post-vaccination).Interpretation: A single dose of the BNT162b2 mRNA and ChAdOx1 vaccines resulted in substantial reductions in the risk of COVID-19 related hospitalisation in Scotland.Funding: UK Research and Innovation (Medical Research Council); Research and Innovation Industrial Strategy Challenge Fund; Health Data Research UK.Conflict of Interest: AS is a member of the Scottish Government Chief Medical Officer’s COVID-19Advisory Group and the New and Emerging Respiratory Virus Threats (NERVTAG) Risk Stratification Subgroup. CRS declares funding from the MRC, NIHR, CSO and New Zealand Ministry for Business, Innovation and Employment and Health Research Council during the conduct of this study. SVK is co-chair of the Scottish Government’s Expert Reference Group on COVID-19 and ethnicity, is a member of the Scientific Advisory Group on Emergencies (SAGE) subgroup on ethnicity and acknowledges funding from a NRS Senior Clinical Fellowship, MRC and CSO. All other authors report no conflicts of interest.Ethical Approval: Approvals were obtained from the National Research Ethics Service Committee, Southeast Scotland 02 (reference number: 12/SS/0201) and Public Benefit and Privacy Panel for Health and Social Care (reference number: 1920-0279).


Subject(s)
COVID-19 , Emergencies
SELECTION OF CITATIONS
SEARCH DETAIL